
MULTILEVEL ACCELERATED OPTIMIZATION FOR
PROBLEMS IN GRID GENERATION3

Markus Berndt1 Mikhail Shashkov2

1Los Alamos National Laboratory, Los Alamos, NM, U.S.A. berndt@lanl.gov
2Los Alamos National Laboratory, Los Alamos, NM, U.S.A. shashkov@lanl.gov

3LA-UR-03-3474

ABSTRACT

The quality of numerical simulations of processes that are modeled by partial differential equations strongly depends
on the quality of the mesh that is used for their discretization. This quality is affected, for example, by mesh
smoothness, or discretization error. To improve the mesh, a functional that is in general nonlinear must be minimized
(for example, the L2 approximation error on the mesh). This minimization is constrained by the validity of the mesh,
since no mesh folding is allowed. Classical techniques, such as nonlinear CG, or Gauss-Seidel steepest descent, perform
very poorly on this class of minimization problems. We introduce a new minimization technique that utilizes the
underlying geometry of the problem. By coarsening the mesh successively, in a multilevel-like fashion, minimizing
appropriate coarse grid quality measures, and interpolating finer meshes from coarser ones, a more rapid movement
of fine mesh points results, and the overall convergence of the minimization procedure is accelerated.

Keywords: mesh generation, optimization, multilevel methods

1. INTRODUCTION

Grid generation often requires the minimization of a
functional that describes mesh smoothness or approx-
imation quality of a specific function. Optimization
methods that are commonly used in this context are
of the steepest descent type [1, 2]. These methods
perform very poorly, if vertices, or clusters of vertices
have to move large distances from an initial grid to
reach a final optimal configuration.

Our multilevel approach effectively achieves an accel-
erated vertex movement by coarsening the grid and
then solving an appropriate optimization problem on
the coarsened grid. The coarse grid is then interpo-
lated to the fine grid. On a coarser grid, vertices can
move larger distances than on fine grids, without the
mesh becoming invalid. By interpolating an improved
coarse grid to a finer grid we effectively move clusters
of fine grid vertices by moving only a single coarse
grid vertex. We apply the idea of coarsening a fine

grid, approximately solving an appropriate coarse grid
optimization problem, and interpolation the resulting
grid back to the fine level recursively. This describes
our multilevel accelerated optimization procedure.

In this paper, we first give an overview of classical
multigrid methods to motivate the applicability of
multilevel-type ideas in the context of optimization
problems that arise in the context of grid generation.
We then introduce our target optimization problem
and construct the multilevel components coarsening
and interpolation. After defining the coarse grid opti-
mization problems we define the multilevel optimiza-
tion procedure, give a complexity analysis and a nu-
merical example to underline the performance gain
that can be achieved with this type of approach to
optimization.

2. OVERVIEW OF MULTILEVEL
METHODS

Multilevel methods are the most efficient methods
for solving linear systems that typically arise in the
discretization of elliptic partial differential equations
(PDEs). A good introduction to these methods is
given in the Multigrid Tutorial [3]. For a more com-
prehensive overview, see [4]. Here, we give a short
introduction of multilevel methods, to motivate their
applicability to of some grid generation problems.

One class of methods for solving linear systems is
called relaxation methods. As an example, we intro-
duce Jacobi relaxation. A given linear system

Ax = b (1)

can be re-written, using the diagonal D, the lower tri-
angular part L, and the upper triangular part U of A
in the following way,

Dx = b− Lx− Ux. (2)

Equation (2) gives rise to the iterative procedure com-
monly referred to as Jacobi relaxation,

xn+1 = D−1(b− Lxn − Uxn). (3)

For the class of linear systems that arise in the dis-
cretization of elliptic PDEs, it is easily seen that it-
eration (3) converges to the solution x? of equation
(1).

The obvious advantage of such an iteration is its sim-
plicity and therefore its ease of implementation. How-
ever, the convergence of such relaxation methods is
typically prohibitively slow. To illustrate the conver-
gence behavior, we discretize

u′′ = 0, on (0, 1), (4)

with homogeneous Dirichlet boundary conditions
u(0) = u(1) = 0, using finite differences on a regu-
lar grid. Note that in this example, an iterate equals
the error.

Figure 1 shows an oscillatory initial guess (top), the
solution after one Jacobi relaxation (middle), and the
error after five Jacobi relaxations (bottom).

The figure illustrates that already after one Jacobi
relaxation, the high frequency error components are
gone (middle), and after five relaxations only a very
low frequency error remains (bottom).

An important observation is that the notion of fre-
quency is linked to the mesh size. The function in
the bottom graph in Figure 1 can be adequately rep-
resented on a mesh consisting of five equally spaced
grid points. On such a grid, this function can be in-
terpreted as being of high frequency. Jacobi relaxation

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Figure 1: Error reduction in Jacobi relaxation. The top
graph shows an oscillatory initial guess, the middle graph
shows an intermediate solution after one Jacobi smooth-
ing step, and the bottom graph shows the solution after
five Jacobi smoothing steps.

would dampen it in a couple of iterations. This obser-
vation motivates multilevel methods.

We first note that, if x is any vector and r = b − Ax
the residual, then solving for the correction x̃

Ax̃ = r (5)

enables us to write down the solution x? = x + x̃. Us-
ing a relaxation method on the finest grid, transferring
the residual to a coarser grid, solving the correction
equation there, and correcting the fine grid solution
with an interpolation of the correction from the coarse
grid, summarizes a two grid method. Of course, this
two grid method can be used to solve the coarse grid
linear system (if the coarse grid can be further coars-
ened). This constitutes the recursive definition of the
multigrid method.

Figure 2: V-cycle for three levels (circles – relaxation, ar-
rows down – restriction, arrows up – interpolation, square
– coarse grid solve)

Figure 2 illustrates one iteration of the multilevel
method. Relaxation is represented by circles, restric-
tion and interpolation are represented by arrows that
are pointing down or up, respectively, and the coarse
grid solve is represented by a square. Because of the
characteristic shape of this diagram, the iteration is
called V-cycle.

The most important property of the multilevel method
is that it is typically of complexity O(N) for the V-
cycle, where N is the number of unknowns. In other
words, it is scalable, whereas most other known linear
solvers are not.

3. OPTIMIZATION IN GRID
GENERATION

Many problems in grid generation can be stated as
a discrete nonlinear optimization problem, where the
objective function has the form

F (G) =
∑

vertices

Floc(G). (6)

Here, G is the grid. An example for this is the refer-
ence Jacobi objective functional that is used in mesh
smoothing (see, for example, [1]).

Methods that are commonly used to solve these types
of optimization problems include nonlinear conjugate
gradient methods, Gauss-Seidel Newton, and Newton
Gauss-Seidel. These methods have two common flaws.
Their convergence is typically slow, and they do not
scale well with the size of the mesh.

To exemplify the problems that all these methods
exhibit, we briefly describe the Gauss-Seidel New-
ton method. Denote by {x(0)

i }i=1,...,n the vertices,
and by E the edges in the initial grid G(0) =
({x(0)

i }i=1,...,N , E). The k-th iteration is as follows.

1. Loop over the vertices i = 1, . . . , N and solve for

each i the local minimization problem

x
(k)
i = arg min

x
F (x

(k)
1 , . . . , x

(k)
i−1, x, x

(k−1)
i+1 , . . . , x

(k−1)
N)

by Newton’s method.

2. Set Gk = ({x(k)
i }i=1,...,N , E).

Of course, in each Newton step, the new optimal po-
sition for vertex i can only be chosen inside a set that
preserves mesh validity. We refer to this set at the
feasible set. The problem with this approach is that if
the optimal grid is far away from the initial grid, the
convergence will be very slow.

We propose an optimization algorithm that is based on
ideas from multilevel methods. These methods build
on the flaws that the aforementioned methods have, in
much the same way, that multilevel methods build on
the flaws of simple relaxation methods.

4. COARSENING AN UNSTRUCTURED
TRIANGULAR GRID – THE
RESTRICTION OPERATOR

The coarsening procedure that we present is very sim-
ilar to Delaunay-Coarsening (DC), introduced in [5].
In an initial step in DC, the list of vertices is reordered
in such a way that all boundary vertices come first. In
a loop over the vertices in this list the current vertex
is added to the list of coarse vertices and its neighbors
are deleted from the list of vertices. Hence, initially
the boundary is coarsened, and then the interior. As a
slight modification of this algorithm, we consider such
boundary vertices first that are necessary to properly
resolve the shape of the domain. An example for such
vertices are the four corner vertices of a square.

An alternative coarsening algorithm that could be em-
ployed in the context of our algorithm is presented in
[6]. This algorithm is based on edge contraction and
it works in two as well as in three dimensions. For the
purposes of this paper, it was simpler to use a strat-
egy that builds on readily available software for two
dimensional Delaunay triangulation. We now formal-
ize our coarsening procedure.

We will need the notion of distance for vertices in a
grid. To that end, we first define a path pi,j connecting
vertices xi and xj through a grid as a sequence of edges
{eij}j=1,...,K , where eij and eij+1 are adjacent, and ei1

is adjacent to xi, and eiK is adjacent to xj . We use
the notation |pi,j | = K to denote the length of pi,j .
Now, denote by dG(xi, xj) the distance function for a
particular grid. It is defined as

dG(xi, xj) = min{|p| : p ∈ Pi,j}, (7)

where Pi,j is the set of all paths that connect vertices
xi and xj .

As a first step in our coarsening procedure, we add
all fine vertices to the set of available vertices L =
{xf

i }i=1,...,N , and initialize the set of coarse vertices
as the empty set: C = ∅. In the next step, we mark
all boundary vertices that are necessary to properly
resolve the geometry of the domain as coarse vertices
and remove them from L: If xf

i ∈ L is such a vertex,
let L ← L\{xf

i }, and let C ← C ∪ {xf
i }. Then, all

of their neighbors, that is, all fine vertices xf
j ∈ L for

which dG(xf
j , xi) = 1, for any xi ∈ C, are removed

from L.

In a second step, we loop over the remaining bound-
ary vertices in L. The current vertex xf

i in this loop
is removed from L: L ← L\{xf

i }, and added to C:
C ← C ∪ {xf

i }. Then all neighbors of xf
i in L are also

removed from L.

All other coarse vertices are determined in a greedy
algorithm to find a maximal independent set. Pick
any vertex xf ∈ L, mark it as a coarse vertex C ←
C ∪ {xf}, and remove it from L: L← L\{xf}. Then,
remove all its neighbors from L: For all x̃f ∈ L, such
that dG(xf , x̃f) = 1, L ← L\{x̃f}. The algorithm
terminates, when L is empty.

We now have a set C of vertices that are marked as
coarse. To create a coarse grid from these, we use a
the classic sweep line algorithm by S. Fortune (see [7])
to generate a Delaunay triangulation. For the simple
domains we have considered so far, there have been
no problems with boundary preservation. As a fix we
plan to use constrained Delaunay

Figure 3 illustrates the coarsening process. Given a
fine grid (top), a maximal independent set of coarse
points is determined (middle), from which a Delaunay
triangulation is generated (bottom).

4.1 Restriction of the fine to the coarse
grid

The described procedure yields a coarse grid, as well
as a relationship between this coarse and the initial
fine grid. We use this relationship to define the re-
striction operator. We keep the connectivity of both
the fine and the coarse grid fixed. When the fine grid
moves, the coarse grid moves along with it by virtue
of each coarse vertex having the same location as its
corresponding fine vertex. We call the process of up-
dating the coordinates of the coarse grid vertices to
the values of their corresponding fine grid vertices the
restriction of the fine to the coarse grid.

���
�

���
�

���
�

���
�

��	
	

�

�

��

���
�

���
�

���
�

���
�

���
�

���
�

��	
	

�

�

��

���
�

���
�

Figure 3: Coarsening an unstructured triangular grid.

5. INTERPOLATING A FINE GRID
FROM A COARSE GRID

In the previous section, we have introduced the restric-
tion operator. After a coarse grid is created, we record
for each fine vertex what its relation to the coarse grid
is. There are two possible cases.

• First, a fine vertex xf was marked as coarse in
the coarsening procedure (xf ∈ C), and

• second, a fine vertex was discarded in the coars-
ening procedure (xf 6∈ C).

In the first case, we interpolate by injection. More
specifically, we replace the coordinates of the fine ver-
tex with the coordinates of the coarse vertex. In the

second case, we initially find the coarse triangle τ c,
such that the coordinates of the fine vertex xf are in-
side of τ c. Then, we store the barycentric coordinates
(ξ

(1)

xf ,τc , ξ
(2)

xf ,τc , ξ
(3)

xf ,τc) of vertex xf inside of τ c. To in-

terpolate the coordinates of xf from the coarse grid
after the coarse grid has changed, we compute new
physical for vertex xf using these barycentric coordi-
nates.

5.1 Mesh folding induced by interpolation

It is possible that after interpolating a fine grid from
a coarser grid, the fine grid is folded (i.e. some cell
volumes are negative) in some places. Here we give an
example to illustrate this possibility.

Figure 4: An example for mesh folding induced by inter-
polation. The dashed lines are the fine grid and the solid
lines the coarse grid. The initial grid is shown on top. In
the bottom grid, the bottom right corner has moved up,
and the fine grid has moved with it, consequently being
folded at center coarse grid vertex.

Figure 4 illustrates this case. The top grid shows the
initial configuration, with dashed lines representing
the fine grid and solid lines representing the coarse
grid. In the bottom grid the bottom right corner of
the initial grid has moved up. With it the fine grid
has moved, and consequently one fine grid triangle is
folded in the area of the center coarse grid vertex.

This grid folding can be fixed using the mesh untan-
gling procedure introduced in [8]. In this procedure, a
three stage approach is taken. In the first stage, the
grid is untangled using the feasible set method. The
feasible set for a vertex is defined as the set of all posi-
tions of the vertex for which each connected element is
valid at the corners affected by the position of the ver-
tex (see [8, chapter 2]). The feasible set can be inter-
preted as a set of inequality constraints, given by the
the feasible half planes. See Figure 5 for an example
of the feasible area of a vertex. Here the feasible area

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

Figure 5: The feasible set for the placement of the cen-
tral vertex is the shaded area.

is the shaded area. In practice, the feasible set can be
computed by using the simplex method to minimize
simple linear functions (e.g. f(x, y) = 1,−1, y,−y) to
find three distinct corners of the feasible set polygon.
The vertex is then placed at the center of this triangle
that is formed by these three corners.

The feasible set for a vertex can be empty. In this
case the feasible set method fails. In a second stage a
functional is minimized. Denote by α(τ) the area of
element τ , and let β > 0 be a small parameter. The
functional

f(x) =
∑
τ∈G

(|α(τ)− β| − (α(τ)− β))2 (8)

is minimized using standard minimization methods
such as the conjugate gradient method [2, 9]. Note
that functional f has only contributions from elements
that have negative area. All other elements contribute
zero. It is also important to observe that f is smooth
and convex. In a third step, another sweep of the fea-
sible set approach is applied.

The untangling method outlined above is not guar-
anteed to work. However, the cases of tangled meshes
that arise in the multilevel procedure are well suited to
this untangling procedure. Typically, only few cells be-
come tangled in the interpolation procedure. In most
cases one sweep of the feasible set approach is enough
to untangle the grid.

6. DEFINING A COARSE GRID
OPTIMIZATION PROBLEM

In the previous sections we have defined a restriction
and, derived from it, an interpolation operator. Both
operate on triangular grids. Our goal is to accelerate
the original optimization problem, by solving a similar
problem on a coarser mesh.

We give an example for which it is easy to derive an
appropriate coarse optimization problem. We first de-
fine the L2 projection Πτ,Vτ

Πτ,Vτ (f) = arg min
φ∈Vτ

‖f − φ‖L2(τ) (9)

for a triangle τ and a function space Vτ on τ . As
examples, we can think of Vτ as the space of constant
functions on τ

V const
τ = {φ(x, y) = c : c ∈ <} (10)

or the space of linear functions on τ

V lin
τ = {φ(x, y) = ax + by + c : a, b, c ∈ <}. (11)

Note that Πτ,V const
τ

(f) = f , the average of f on τ .
Then, the objective functional is

F (G) =
∑
τ∈G

‖f −Πτ,Vτ (f)‖L2(τ). (12)

The grid Gmin that is the minimizer of optimization
problem

Gmin = arg min
G

F (G) (13)

yields the best possible L2 approximation of the func-
tion f with piecewise constant or piecewise linear func-
tions, on grids that have the same connectivity as the
starting grid.

Based on (12) it is straightforward to define an appro-
priate coarse grid minimization problem. In fact, we
can use the same objective functional as in (12), and
apply it to a coarser grid.

F (Gcoarse) =
∑

τ∈Gcoarse

‖f −Πτ,Vτ (f)‖L2(τ). (14)

7. THE MINIMIZATION PROCEDURE

First a hierarchy of grids is created, using the proce-
dure described in section 4. A natural stopping cri-
terion for the successive coarsening is whether or not
the boundary, or, for example, interior features, such
as material interfaces, can be resolved on a coarser
grid.

On each level, we employ a few iterations of a sim-
ple optimization algorithm, such as the Gauss-Seidel
Newton method described in section 3. After that,

the mesh is restricted to the next coarser level (see
section 4.1). This is repeated until we arrive at the
coarsest level. Here more effort is spent on the opti-
mization step, to find the optimal coarsest grid. Then,
the mesh is interpolated to the next finer level, and a
few sweeps of the Gauss-Seidel Newton method are
applied on the finer level. We repeat this interpola-
tion and optimization step until we arrive at the finest
level.

We refer to this procedure as a V-cycle. This V-cycle
can be formulated recursively. We call the following
procedure V (k, ν1, ν2) the iteration on level k.

1. ν1 iterations of Gauss-Seidel Newton on level k.

2. Coarsen the grid on level k to level k − 1.

3. If k > 2, call V (k − 1, ν1, ν2), else solve the min-
imization problem on level 1 to a high level of
accuracy.

4. Interpolate the grid from level k − 1 to level k.

5. ν2 iterations of Gauss-Seidel Newton on level k.

8. COMPLEXITY ANALYSIS OF THE
V-CYCLE MINIMIZATION

We first consider the coarsening procedure. The selec-
tion of coarse vertices on level k with Nk fine vertices
takes O(Nk) steps. The number of selected coarse ver-
tices depends on the connectivity of the fine grid. On
a regular grid, the number of coarse points will be
Nk−1 ≈ Nk/4, if the fine vertices are numbered in a
lexicographic fashion. See figure 6 for an example. For

Figure 6: Coarsening of a regular grid, circles denote
coarse vertices. The number of fine vertices is 81, and
number of coarse vertices is 25.

an unstructured grid, it is difficult to give a good esti-
mate of the ratio of the number of fine and coarse ver-
tices after coarsening. However, the number of coarse

vertices depends on the average degree of a fine vertex.
In our coarsening algorithm, coarse grids are generated
using a Delaunay triangulation. The expected maxi-
mum degree of a vertex in a Delaunay triangulation is
Θ(log n/ log log n), where n is the number of vertices
[10]. In practice, the coarsening ratio is close to 1/4.

The work per V-cycle is relative to Ntotal, the total
number of vertices on all levels combined. Assuming
a coarsening factor of 0 < δ < 1, we get

Ntotal ≈ NK + NK−1 + . . . + N1 (15)

= NK

K∑
i=1

δK−i (16)

≤ NK

1− δ
(17)

Here, NK is the number of vertices in the finest level
grid. For a coarsening factor of δ = 1/4, this means
Ntotal ≈ 4NK/3.

It is difficult to estimate the complexity of the Newton
step that is performed inside the Gauss-Seidel loop. It
is however reasonable to assume that this complexity
is similar on all levels.

The complexity of the interpolation is O(Nk) on level
k, if no mesh folding occurs. So, in this case, over all
levels, it is O(Ntotal). In practice, mesh folding only
occurs in few locations on the fine grid, and can be
very efficiently remedied with the untangling proce-
dure outlined above. The computational effort spent
in the untangling procedure is negligible.

The coarsening procedure, after the coarse grids have
been created in an initial step, is of complexity
O(Ntotal). The creation of coarse grids consists of
the selection of coarse vertices, which is of complex-
ity O(Nk), on level k, and a Delaunay triangulation,
which is of complexity O(Nk log Nk) on level k.

In conclusion the initial coarse grid creation is of com-
plexity O(NK log NK). After that, each V-cycle is of
complexity O(NK). Hence, the complexity of a V-
cycle is the same as the complexity of a Gauss-Seidel
Newton iteration.

9. A NUMERICAL EXAMPLE

We present a numerical example that is representative
of the performance gain that can be achieved with our
multilevel optimization procedure. The code is written
in the C programming language.

We start with a regular triangular grid G of with 20×
20 vertices on the domain (0, 1)× (0, 1). The objective
is to find the grid that minimizes functional

F (G) =
∑
τ∈G

‖f −Πτ,V const
τ

(f)‖L2(τ), (18)

Figure 7: Fine grid after 500 iterations of Gauss-Seidel
steepest descent (top), and 3 V-cycle iterations (bot-
tom).

with

f(x, y) = 20 tanh(x− y). (19)

This function has a very steep gradient along the line
x = y, and is essentially flat elsewhere. An optimal
grid will have most grid points clustered along this
line.

First, we used a Gauss-Seidel steepest descent proce-
dure to minimize the objective functional. The grid
that resulted after 500 iterations is depicted in figure
7 (top image).

Second, we used a V-cycle iteration with ν1 = ν2 = 3,
i.e. three sweeps of the Gauss-Seidel steepest descent
method were employed before restriction and after in-
terpolation. The coarse grid optimization problem was
solved using νcoarse = 10 iterations of a Gauss-Seidel
steepest descent procedure. The grid that resulted af-
ter three V-cycle iterations is depicted in figure 7 (bot-
tom image). Table 1 shows the value of the objective
functional and the time required to reach this value.
Note that the same computer code was used for the
Gauss-Seidel steepest descent and the relaxation step
inside the V-cycle iteration.

Gauss-Seidel V-cycle

F (G) = 6.44(-5) 4.74(-5)
iterations 500 3

time (sec) 1027 25.9

Table 1: Comparison of iteration counts and wall clock
times for the Gauss-Seidel steepest descent iteration (left
column), and the V-cycle iteration (right column).

The V-cycle iteration converges much faster than the
fine grid Gauss-Seidel steepest descent iteration. The
number of iterations, as well as the time are much
smaller for the multilevel method. Additionally, the V-
cycle iteration reaches a minimum after only three V-
cycle iterations. The Gauss-Seidel steepest descent it-
eration was terminated at a maximum iteration count
of 500, for the lack of a good stopping criterion.

For a fair comparison between the two approaches,
it is not useful to compare numbers of Gauss-Seidel
iterations. Note that Gauss-Seidel iterations on coarse
levels are less expensive than on fine levels. Assuming
a coarsening factor of 1/4, we can estimate the cost
of one V (k, ν1, ν2) iteration relative to the cost of one
Gauss-Seidel steepest descent iteration at

k−1∑
i=1

ν1 + ν2

4i−1
+

νcoarse

4k−1
. (20)

Thus, in our example, we estimate the cost of one V-
cycle iteration equivalent to 6 + 6/4 + 10/16 = 8.75
Gauss-Seidel steepest descent iterations. So, for the
total cost of 3 × 8.75 = 26.25 Gauss-Seidel steepest
descent iterations the problem is converged.

In the V-cycle iteration, six Gauss-Seidel steepest de-
scent iterations are performed on each level. To es-
timate the overhead that is induced by coarse levels,
we divide the time per V-cycle iteration tV−cycle =
8.63sec by the number of Gauss-Seidel steepest de-
scent iteration per V-cycle:

tV−cycle

4
= 2.15sec. (21)

The average time for one iteration of the Gauss-Seidel
steepest descent procedure is

tGauss−Seidel = 2.05sec. (22)

Comparing the two, we observe that the additional
work associated with coarser levels in a V-cycle it-
eration is not very significant. We also note that
the Gauss-Seidel steepest descent iterations that are
performed as part of a V-cycle tend to require less
costly line searches than for the fine level case. This
also helps to keep the average time per V-cycle
per fine level Gauss-Seidel steepest descent iteration
tV−cycle/4 small.

10. EXTENSION TO 3D

The algorithm presented in this paper is a 2D algo-
rithm. The coarsening procedure can be extended to
3D using Delaunay tessellations in 3D. However, as
mentioned above, a coarsening procedure such as the
one described in [6] might be better suited, since De-
launay tessellations in three dimensions can produce
slivers. The untangling procedure is also extensible to
3D (see [8]). This indicates that an extension of our
algorithm to 3D is possible. We are planning to pursue
this direction in our future research.

11. CONCLUSIONS

We have introduced a new multilevel-type optimiza-
tion procedure that is well suited to very efficiently
solve optimization problems that commonly occur in
grid generation applications. Our complexity analysis
indicates that our algorithm scales linearly with the
number of unknowns. Our research has been focused
on the two dimensional case, however, all components
of the algorithm are available in three dimensions, as
well. We will investigate the three dimensional case in
a future paper. It is essential for this approach that
a coarse grid representation of the objective function
that is to be minimized can be derived. In other words,
the change in the initial grid that is required to obtain
the optimal grid must be expressible as small changes
of vertex positions relative to the positions of neighbor
vertices, plus larger changes of positions of groups of
vertices. This is possible for applications where the
objective is to find a grid that is optimal for the ap-
proximation of a function. We plan to extend this
work to include the case where an error estimate, and
not the actual error, is to me minimized.

References

[1] Knupp P., Margolin L., Shashkov M. “Reference
Jacobian Optimization-Based Rezone Strategies
for Arbitrary Lagrangian Eulerian Methods.” J.
Comput. Physics, vol. 176, 93–128, 2002

[2] Knupp P.M., Steinberg S. The Fundamentals of
Grid Generation. CRC Press, 1993

[3] Briggs W.L., Henson V.E., McCormick S.F. A
Multigrid Tutorial, Second Edition. SIAM, 2001

[4] Trottenberg U., Osterlee C.W., Schüller A. Multi-
grid. Academic Press, 2001

[5] Guillard H. “Node Nested Multigrid with Delau-
nay Coarsening.” Tech. rep., INRIA Report No.
1898, 1993

[6] Ollivier-Gooch C. “Coarsening unstructured
meshes by edge contraction.” Int. J. Numer.
Meth. Engng., vol. 57, 391–414, 2003

[7] Fortune S.J. “A Sweepline Algorithm for Voronoi
Diagrams.” Algorithmica, pp. 153–174, 1987

[8] Vachal P., Garimella R.V., Shashkov M.J. “Un-
tangling of 2D Meshes in ALE Simulations.” un-
der review in J. Comput. Phys.

[9] Nocedal J., Wright S.J. Numerical Optimization.
Springer, 1999

[10] Bern M., Eppstein D., Yao F. “The expected
extremes in a Delaunay triangulation.” Int. J.
Comput. Geom. & Appl., vol. 1, no. 1, 79–92, 1991

